
Journal of Statistical Physics, Vol. 70, Nos. 5/6, 1993 
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We present the solution of a linear solid-on-solid (SOS) model. Configurations 
are partially directed walks on a two-dimensional square lattice and we include 
a linear surface tension, a magnetic field, and surface interaction terms in the 
Hamiltonian. There is a wetting transition at zero field and, as expected, the 
behavior is similar to a continuous model solved previously. The solution is in 
terms of q-series most closely related to the q-hypergeometric functions l~bl. 
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1. I N T R O D U C T I O N  

In the study of the statistical mechanics of fluctuating interfaces in two 
dimensions the solid-on-solid (SOS) model has proved invaluable as a 
tractable though nevertheless effective approximation. r The SOS model 
arose from the consideration of the boundary between oppositely 
magnetized phases in the Ising model/3) at low temperatures and is now 
considered to be useful for describing the salient features of a wide variety 
of interfacial phenomena. r 8) The approximation inherent in the SOS 
formulation of a phase boundary, that of no overhangs, implies that the 
configurations considered are simply those of partially directed self-avoiding 
walks (PDSAW). This relates the SOS model to problems in polymer 
physics. 

Exact solutions in statistical mechanics are now viewed as an immen- 
sely important area of mathematical physics (9~ where many results and 
techniques have proven to be widely applicable. Here we present the exact 
solution of the SOS model with a magnetic field and boundary potential in 
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addition to the usual linear surface tension. A generalized or grand parti- 
tion function is found to be expressible in terms of q-series. We point out 
that q-series have played an important role in the solution of the more 
complex vertex and ABF-type models and these series are in general 
related to 0 functions. (9) Our q-series, which has occurred previously in 
work on algebraic languages, (lu can be viewed as a q-generalization of 
Bessel functions, different from those defined classically. ('~ The associated 
PDSAW problem is that of enumerating walks according to perimeter, 
area under the walk, and number of contacts with a wall. The interactions 
chosen lead naturally to the consideration of the critical phenomena in 
terms of critical and complete wetting transitions. These transitions are 
indeed there and the critical behavior is similar to a previously studied 
semicontinuum model where the solution is expressed in terms of Bessel 
functions.('2) 

The SOS model we analyze is defined as follows. Consider a two- 
dimensional square lattice in a half-plane. For each column i of the surface 
a bond is placed on the horizontal link at height ri and successive bonds 
are joined by vertical bonds to form a PDSAW. The configurations are 
given the energy 

- - f iE= -- K 2 [r i - r i_ l l  - H 2  ri-k b 2 (~n. o (1) 
i i i 

Many aspects of several variants and subcases have been considered 
previously. The added restriction that [Ar~[ = [ r i -  r~_,[ ~< 1, giving the 
restricted SOS (RSOS) model, has been extensively studied, especially 
with H =  0, (2' ,3) and considered ('4) for several types of external potential. 
Without magnetic field the unrestricted model has also been 
investigated.(13,,s ,8) Both variants have been considered, utilizing a dif- 
ferent thermodynamic ensemble, as models for polymers in solution, since 
the finite configurations are PDSAW. (z 19) Recently(20) an RSOS model 
with H = 0  but a rigidity term dependent on IAr~--Ari_ll has been con- 
sidered as a model of semiflexible polymers such as DNA. Models in which 
the surface tension term depends on some integer power of IAri[ larger 
than one have proven far more difficult to elucidate. Most relevant to this 
paper is the previous consideration (12) of the above SOS model in the limit 
when the vertical lattice spacing is taken to zero and hence the r~ are 
allowed to assume all positive real values. The full model has been analyzed 
using transfer integral techniques and the partition function is expressible 
in terms of Bessel functions. The phase diagram contains a wetting tran- 
sition at finite temperature Tw for zero field and complete wetting occurs 
taking the limit H ~ 0  for T>~ Tw. It is believed that the discrete model 
would have the same critical behavior, since renormalization group theory 
predicts a single set of exponents for critical and complete wetting (4) in 
systems with short-range forces, and we confirm this expectation. 
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We solve the SOS model defined above using a method first explained 
by Temperley. (21) This requires the deduction of a set of recurrence equa- 
tions (12) relating an infinite set of generating functions. These take on two 
forms, the first being a set of sum equations (i2) and the second di f ference 

equations (20). These are the discrete analogues of the integral and dif- 
ferential equations, respectively, that occur in the analysis of the con- 
tinuous model. These equations are similar to the eigenvalue equations set 
up in a transfer matrix formulation, but have the advantage that one does 
not need to sum over the eigenvalues, after solving the equations, to find 
an expression for the generating function. We extend these methods by 
pointing out that they are equivalent to solving a functional equation (47) 
for the generating function. The functional equation puts the solution of 
the discrete and continuous models on the same footing. A second func- 
tional equation allows the solution to be written as a continued4raction 
expansion. Intriguingly, the two functional equations are related to dif- 
ferent geometric protocols. In general, continued-fraction expansions are 
useful because of the powerful theorems that can be brought to bear con- 
cerning the analytic structure of the solution. (22) Here they also facilitate 
numerical calculation and the derivation of exponents. Another point we 
make is that the solution is related to a variety of walk and polygon 
problems by the method of necklacing. In particular, the problem of 
enumerating bar-graph polygons by area and perimeter is enough to 
provide a solution to the SOS model. 

The layout of the paper is as follows. In Section 2 we define precisely 
the partition and generating function for the SOS model. In Section 3 we 
set up the recurrence relations and show that other generating functions of 
interest can be found by simple concatenation arguments. The solution 
encapsulated in Eqs. (27), (38), (42), and (44) is set out in Section 4, the 
functional equations are discussed in Section 5, and the discussion of the 
singularity structure and phase diagram can be found in Section 6. We end 
with some comments on the wider relevance of this work. 

2. SOS P A R T I T I O N  F U N C T I O N  

The fundamental quantity of interest is the partition function in the 
large-walk limit. We now define this more carefully. The partition function 
for the SOS walks 2 of length N fixed at both ends is given by 

Zl(ro; rl) = exp[--f lE(r0;  rl) ] (2) 

2SOS walks are PDSAWs that have been ascribed a weight according to the SOS 
Hamiltonian. 
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and 

Z N ( r O ; r N ) =  ~'~ "'" ~ exp[--flE(ro;q ..... rN) ] ,  N = 2 , 3  .... (3) 
r I = 0  rN_ 1 = 0  

where 
N N N 

-fiE(ro;q ..... rNI=--K Z Ire-r~_aI--H Z re+b Z O~,,o (4) 
i = 1  i = 1  i = 1  

It  is s tandard  to define 

ZN= ~ ZN(O; rN), N =  1, 2,... (5) 
r N = 0 

SO that  Z u is the part i t ion function for our  SOS interface fixed at one end 
and the other  end allowed to be free. We define 

y = exp( - K), q = exp( - H), x = exp(b) (6) 

so y is a temperature-like, q a magnetic  field-like, and x a binding energy- 
like variable, and write 

zN = ZN(y, q, ~) (7) 

The free energy is then 

-~f(y,  q, x) = lira l l o g  ZN(y, q, X) (8) 
N ~ o 9  2 V  

Define the generalized (grand canonical)  part i t ion function, or simply 
generating function, as 

G(I)(x, y, q, I<)= ~ xNzN(y, q, K) (9) 
N ~ I  

Thus, the radius of convergence xc(y, q, ~) of G(1)(x, y, q, K) with respect 
to the series expansion in x can be identified as exp(fif(y,  q, x)); hence 

f(y, q, K)= k T l o g  xc(y, q, ~) (10) 

3. T H E  R E C U R R E N C E  R E L A T I O N S  

By considering SOS walks 3 (see Fig. 1) that finish with a horizontal  
step at height r, we define a generating function for those walks as 

Gr= ~ xNZN(O;r) (11) 
N = I  

3 To be precise, SOS walks start at the surface and travel in either the horizontal or vertical 
direction and end with a horizontal step. 
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Fig. 1. A typical SOS configuration beginning on the surface and finishing at a height r with 
a horizontal step: each horizontal step is assigned a weight x, each vertical step a weight y, 
each unit of area (shaded) a weight q, and each step that touches the surface a weight xx. The 
picture also indicates how such a walk can be constructed out of a walk ending at a height 
s by adding a horizontal step at a height r, which multiplies its Boltzmann weight by xy rr slqr. 
This is the essential procedure in deriving Temperley's recurrence relation (12). 

The observat ion of importance is that  walks that  end at height r are made 
of walks of all heights that  finish one column to the left plus the extra 
vertical steps, one horizontal  step, and area (field) weighting required to 
complete the walk. Taking account  of walks that  visit the surface just 
before the last column and walks that  have just begun leads to the following 
recursion relation: 

Gr=x[1-l-~r.O(tC-1)]qr(yr-t- ~ y[r-SlGs),  r = 0 ,  1,... (12) 
s = 0  

This is the sum equat ion ment ioned in the introduct ion and its derivation 
is a fundamental  step in the method of Temperley. We now show how 
knowledge of the G r allows the calculation of several generating functions 
of interest, including G~l)(x, y, q, ~c). Defining 

N(x, y, q, ~c; ~) = ~ # r G  r (13) 
r=O 

we obtain the generating function for SOS walks ending on the surface as 

G(I1)(x, y, q, K) = ~ xNZN(O; 0 )  = KX[1  "l- ~ ( X ,  y ,  q, K; y ) ]  (14) 
N = I  

whereas the generating function for SOS walks ending at arbitrary height 
(and by symmetry  one starting with a horizontal  step at an arbitrary height 
and finishing at the surface without  a step) as defined in (9) is given as 

G(l)(x, y, q, ~c) = ~q(x, y, q, to; 1) (15) 

Generally, walks starting at an arbi t rary height that  touch the surface at 
least once can be written as the concatenat ion of two SOS walks (possibly 

822/70/5-6-7 
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of zero length), one of them not having any contacts with the surface 
except for its starting point (~ = 0), i.e., 

E1 +i f (x ,  y, q, ~, 1)] Kx[1 +i f (x ,  y, q, 0; 1)] (16) 

Similarly, the sum of all walks whose minimal distance to the surface is 
equal to r can be written as 

E1 -[- ~(xq r, y, q, 1; 1)] xq~[1 .-]- (fl(xq r, y, q, 0; 1)] (17) 

so that the sum of all walks which start and end with horizontal steps is 
given by 

[1 + fr y, q; x; 1)] xx[1 + C~(x, y, q, O; 1)] 

+ ~ El+f~(xqr, y,q, 1;1)]xqr[l+~(xqr, y,q,O;1)] (18) 
r = l  

We remark that this sum is only meaningful for [q[ < 1. 

4. SOLVING THE RECURRENCE RELATIONS 

Starting with (12), we will now derive a homogeneous second-order 
difference equation which we can solve using an ansatz from ref. 2. Using 
the scaling behavior of the solutions, we can eliminate one of the two 
linearly independent solutions. We conclude by writing the general solution 
of (12) as an expression involving the quotient of two q-hypergeometric 
functions. 

Taking differences in (12), we first eliminate the inhomogeneous term, 

Gr+l-qyGr=x(1- y 2) y ~, r 1,2,... (19) 
s = O  

Upon taking differences a second time, we are left with 

(Gr+2 qyGr+l) - q  (Gr+l-qyGr)=x(qy -q)  -r+lG - -  q r + l ,  r - - - -  1, 2,... 

(20) 
This is the difference equation mentioned in the introduction. If the right- 
hand side of this equation were zero, it would be a homogeneous difference 
equation with constant coefficients. Its characteristic polynomial P(2) is 

P(2)= (2-qy) (Z -q)  (21) 

and the solution is given by Gr= A1(qy)r-F A2(q/y) r. 
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This motivates the ansatz (2) 

G~= 2 r ~ c , (q)q "r, r = 1 , 2  .... 
n = 0  

which inserting into (20) gives 

(22) 

P (2 )co+  q.r p ( )vq~)c .+x  - q y  zqc , ,  1 
n = l  

This equation is solved by 

(23) 

P ( 2 ) = 0 ,  i.e., 2 1 = q y  and 22= q 
Y 

(24) 

and, choosing Co = 1, 

c~ = (1 x (qy - q/y) 2qm - [ x ( y  - 1/y)2]" q('~) 
.,, =, P(2q m) ()~/y; q).  (2y; q).  

where we have used the standard abbreviation 

(25) 

Defining 

(x;q),,= 12I (1-xq "-1) (26) 
m = l  

q 2 ) ( -  t)" 
H(x, q, t) 

x ~ 

.~o (x; q). (q; q). 

we now can write the general solution of (20) as 

(27) 

q 

q 
(28) 

As an aside, we note that the function H is directly related to a basic 
hypergeometric function o~ 

H(x, q, t) = lq~,(O, x; q, t) (29) 

which can be seen to be a limiting function of 2~b~ and that is the q-defor- 
mation of the more familiar hypergeometric function 2F 1. Analogously, the 



1182 Owczarek and Prellberg 

function H can be understood (apart from some normalizing factors and 
seen by taking the limit q ~ 1) as a q-generalization of Bessel functions. 
Furthermore, formally taking the continuum limit vertically transforms 
(using, in addition, various variable substitutions) Eq. (20) into Bessel's 
differential equation. Therefore, the solution above is also related via this 
second limit to Bessel functions. 

Returning to the analysis, we see that, for Iql < 1, H ( x ,  q, tq ~) is 
uniformly bounded in r, so that we can write 

I r ] IG~I ~cons t -  ( q y ) r +  (30) 

This we insert into (12) and, assuming 0 < q < y2 < 1, we get 

Iyr.q_i~l (q)S ~ (q)S] 
I Grl~<const 'qr  yr s + yS r 

0 S:r 
< ~ c o n s t . ( q y )  r 1+  ~< const �9 (qy) r (31) 

As H ( x ,  q, tqr)'---~ 1 for r ~  ~ ,  we see that in fact A2=0. Using the 
appropriate boundary conditions for Go and G1 from (12), we can 
determine the constant A1. 

Once we have the right ansatz, though, another way is more 
convenient. We write in analogy to the above 

G r = [ l + O r ,  o(tC-1)]J~ r )_~ c , ( q ) [ q r ]  ~, r = 0 ,  1,... (32) 
n ~ O  

where we accommodate the particular boundary conditions of our 
problem. Substituting this ansatz, we have 

12r ~ cnq "r 
X n = O  

= (qy)~ + (qy)~ c .  1 - 2q"/y  + K -  1 ricO ( 1  ) 
q- "~" Cn l qnr 

n = 1 1 - 2q ~ l y  --  1 - 2q n 1/y (33) 

so that, again, 2 = qy and furthermore 

x(1 _ y2)qn 
c . =  ( l _ q . ) ( l _  y2q . )  C . _ l -  

[ - x ( 1 -  y2 )q]n  q (~) 
(q; q)n (qy2; q)n Co (34) 
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with normalization 

1 ) 
x - C ~  ~:o l - q  n + l + t c - 1  cn (35) 

This implies 

1 1 
--  = - H(y  2, q, x(1 - y2)) _ (x - 1) H(qy 2, q, x(1 - y2)q) 
c O x 

(36) 

so that 

Gr=  [1 + 6r, o(~C-- 1)] x(qy) r 

g ( q y  2, q, x(1 - y2)q~ +,.) 
x 

H(y  2, q, x(1 - y2)) _ (K - 1) xH(qy 2, q, x(1 - y2)q) 

Defining the functions 

(37) 

gr(x, y, q ) = H ( q y  2, q, x(1 - y2)ql+r) (38) 

and 

h(x, y , q ) = H ( y 2 ,  q , x ( 1 - y 2 ) ) = ( 1 - y  2) 1 [ ( l _ x _ x y 2 ) g o _ y 2 g ~ ]  (39) 

we can write simply 

Gr=[ l+Or ,  O(lC__l)]x(qy)r gr 
h - ( ~ -  1 )xgo 

so that we have 

(40) 

~(x, y, q, ~c; #) = x  g(#) + ( ~ -  1)g~ 
h - Oc-  1)xgo (41) 

where 

g(#) = ~. (#qy)r gr(X, y, q) (42) 
r = O  

= ~ [ - x ( 1 -  yZ)q] ,  q(~) 1 
n=o ~ ( ~ q ) ~  1 - #yql +,, (43) 

For ]ql < 1, the only effect of the extra factor (1 _#yq l+n)  ~ in the sum, 
which differentiates this expression from a q-Bessel function, is the intro- 
duction of additional poles at #yq l+~=  1. Apart from these poles, the 
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domain of convergence and thus the locus of singularities of ~(/~) are 
independent of/~. Specifying # = 1, we get 

G(1)(x ' Y, q, x) = x g ( 1 ) +  ( x -  1)go (44) 
h -  ( to -  1)xgo 

The function g(y)  can be written in terms of q-Bessel functions, leading to 

G(ll)(x,  y, q, x) = tcx go (45) 
h - (~ - 1 )xgo 

The solutions (44) and (45) have been written in a way suggestive of 
the singularity structure needed to discuss the phase diagram. To this end, 
we notice that the generating functions diverge when, implicitly, 

1 h(x, y, q) 1 H(y  2, q, x(1 - y2)) 
x = - -  - (46) 

- 1 go(x, y, q) K -  1 H(qy 2, q, x(1 - y2)q) 

and that this depends analytically on x for q < 1. So the behavior of the 
ratio h/go as well as g(1 )/go has to be considered to completely characterize 
the singularity structure. This can be done by making considerations 
similar to those of ref. 23. The results of this analysis necessary for the 
phase diagram will be discussed in Section 6. 

5. F U N C T I O N A L  E Q U A T I O N S  

In this section we outline alternative solution procedures that utilize 
functional equations. In the field of exact solutions (9) functional equation 
techniques have proven to be of importance and so their relationship to 
other methods in a model such as this is of some interest. Also, as we shall 
see, there are two different ways of writing down functional equations, 
related to different geometrical approaches. One of these approaches leads 
to a series expansion, whereas the other leads to a continued-fraction 
expansion of the generating function. So, in addition to providing an 
additional route to the solution, they facilitate mathematical insights into 
the problem. 

In extension of the Temperley method, the recurrence relation (12) 
(r . . . . .  G �9 implies a functional equation for t /~ )=~r=0  # r" 

1 (~c 1 ) + - - +  ( ~ - 1 ) +  (r 
x ~ ( ~ ) =  -- 1 - # q y  1 - ~ q / y  

( 1 1 /y )  f#(#q) (47) 
+ 1--#qy  1- -~q 
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This functional equation has a counterpart of similar form for the semi- 
continuous model: 

1 1 1 1 
x-~r (~c- 1)+ - log(#qy)  + 1)+ -log(#q/yi ~(Y) 

+ - log(#qy)  -log(l~q/y) ff(~q) (48) 

which illustrates the equal complexity of the two models. 
Iteration of the first equation is another way of deriving the results of 

the previous section in the form of the same series expansions. Substituting 
qn# for # and multiplying with 

~(n) = x" 1 - l.tqmy 
m = O  

gives 

1 
- E~(n) ~(/~q") - x(n + 1) ff(#qn + 1)3 
X 

=~(n)  ( K - 1 ) + l _ / t q , + l y +  ( ~ - l ) + l _ / ~ q , + l  

Provided that limn ~ ~ ~(n) N(/~qn) = 0, we now can sum over n and get 

N(/~)=x z(n) ( K - - l ) +  _#qn+ly 
n = O  1 

1 
(51) 

Inserting / ~ = y  determines if(y) and the resulting expression can be 
checked to coincide with the results from the previous section, e.g., 
Eq. (41). An analogous argument leads to the solution of the continuous 
model. 

However, an entirely different method based on a (recursive) 
necklacing argument enables us to derive a functional equation for the 
generating function. This procedure leads to a continued-fraction represen- 
tation of the generating function. 

Let K(x, y, q) denote the generating function for either a walk which 
consists of a horizontal step or a walk which starts and ends on the surface 
without additional contacts and is followed by a horizontal step, i.e., 

K(x, y, q) = x [ 1  +i f (x ,  y, q, O; y)]  (52) 
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K(x, y, q) is simply related t o  G(ll)(x, y, q, 0) at ~c = 0, as can be seen from 
(14). Thinking of the walks that contribute to K(x, y, q), we can view 
K(x, y, q) as the concatenation of copies of itself, which are shifted into the 
y direction by one vertical step, i.e., K(qx, y, q). This leads, after some 
combinatorics, to an equation relating these two generating functions: 

K(x, y, q) = q y [K(qx, y, q)]n _ yqx + qx (53) 
n = l  

Summing, one obtains 

K(x, y, q )= ~x(1--  y ) - Y ]  + y 
1 

(54) 
q 1 - K ( q x ,  y, q) L q l  

or, expressed in terms of N(x, y, q, 0; y), 

qx + (1 + qx) G(qx, y, q, 0; y) 
G(x, y, q, O; y ) =  y (1 ---~-)--- ~ G ~ ,  ~ q ,  O; y) (55) 

The generating function G (11) (now for arbitrary x) is given by 

~. 1 (56) G(ll)(x, y, q, ~c) = lr y, q)]n = _ 1 + 1 - ~K(x, y, q) 
n = l  

Iteration of Eq. (54) readily leads to a continued-fraction expansion for 
K(x, y, q) and thus for G (11). Defining 

we can write 

an = 1 + Y -  xqn(1 - y), bn - Y (57) 
q qan an + 1 

1-K(x, y,q)=ao 

= ao(1 + 

Y/q 

al - Y/q 
Y/q 

a2 - y/q 
a 3  

a 4 - -  . 

bl 

1 + b2 
b3 

1 q- b4 
1 + - -  

1 + - - -  

(58) 

(59) 

which certainly converges if lb. F ~ 1/4, for all ft. (22) 
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We note that another, more powerful continued-fraction expansion 
can be found by working directly with ratios of the q-Bessel function (that 
is, once the series solution has been found). Here, instead, we want to 
emphasize and contrast the geometric background of these two types of 
functional equations and the structure of their solutions. One advantage of 
the second functional equation is that it provides us with a protocol for the 
computation of the critical exponents. We observe that the computation of 
the generating functions on the line q = 1 is a relatively simple matter, and, 
upon partial differentiation of Eqs. (54) and (56) and insertion of q = 1, the 
various partial derivatives of G (11) with respect to its arguments can be 
readily computed. Investigation of their divergences and a scaling ansatz 
leads in turn to the computation of the critical exponents, the results of 
which are given in the next section. We will discuss these techniques in 
more detail in a further paper. (24/ 

6. S I N G U L A R I T Y  S T R U C T U R E  A N D  P H A S E  D I A G R A M  

To begin this discussion, we present the solution of the difference 
equations when q = 1. The solution is easily obtained from (20) using the 
ansatz G r = C A  r in place of (22). After some elementary algebraic 
manipulations the generating function G (1) (we shall concentrate on this 
generating function here) is given by 

X ( 1 - -  y 2 ) [ ( 1 - - K ) A  + K] 
G(II(x,  y, 1, ~r [ 1 -  x t r  - A )  (60) 

where 

2A = [(1/y + y )  - x ( 1 / y  - y) ]  - [(1/y - y)2 (1 + x 2) - 2 x ( 1 / y  2 - y2)]  1/2 

(61) 

In our interface problem we consider the generating functions as power 
series in x and the coefficients are canonical partition functions of the inter- 
face problem. If, however, we set x = y, then the generating functions can 
be viewed as a power series in y where the coefficients are the partition 
functions of the related polymer model which are simply noninteracting 
PDSAWs above a "sticky" surface. Keeping this in mind, we can now 
check that our expression for the G ~1) reproduces the previous results for 
that problem32) 

The above expression for G <~ has two singularities in x: one at 

~ c - - l - - ~ c y  2 
xc = xb - tc(~c - 1)(1 - y 2 )  (62) 
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and also at 

1 - y ( 6 3 )  x c = x f - l +  y 

These can be checked by putting x = y to produce the known results for 
the singularities in the polymer problem 

and 

~c(1 - y2)(1 + y -  ~cy) = 1 (64) 

(l+y) 
Y ( 1 - y )  1 (65) 

It is enlightening to compare our expression (60) for the generating func- 
tion with the expression obtained from the transfer matrix method, (19) 
where x = y. The transfer matrix method gives the generating function as 
an integral over a continuous spectrum plus a bound-state contribution. 
This method provides physical insights and allows the calculation of 
correlation functions, once the spectrum has been analyzed. Our technique, 
on the other hand, gives an immediate expression for the generating func- 
tion which facilitates the calculation of exponents. This difference arises 
because the transfer matrix method requires the more subtle considerations 
of the mathematics of infinite-dimensional matrices and the subsequent 
normalization of eigenvectors. 

Returning to our interface problem, we find that the two singularities 
are simultaneously achieved when 

~c = ~c c = 1/(1 - y) (66) 

When • < ~c c then Xf<Xb, SO that for binding potentials less than a critical 
value the singularity does not depend on that potential. At fixed y, on 
varying ~, there is then a critical point t%. On closer examination it can be 
seen that this is just a critical wetting transition where the SOS interface 
binds to the surface on increasing ~:. From analysis of the solution (44), for 
q < 1 the generating function has only one singularity that depends on ~. 
There is no longer a critical point and the interface is always bound to the 
surface. In Fig. 2 the radius of convergence xc(y, q, ~c) of the generating 
function, and hence the free energy, is plotted for fixed y = 1/2 at various 
values of tr above, at, and below ~c c = 2. We can see that on taking the limit 
q - * l  (that is, H ~ 0 )  for ~<~cc there is a cusp singularity in the free 
energy surface that is the sign of the complete wetting transition. For tr > ~c~. 
no such transition exists. Setting q =  1, we plot in Fig. 3 the radius of 
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1.5-  ~ . . . ~ . ~ .  ~: = 0,0 
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0.0 0.2 0.4 0.6 0.8 1.0 
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Fig. 2. The radius of convergence x c ( y  , q, to) of G(1)(x, y, q, lc) at fixed y =  1/2 and for 
various values of ~c = 0.0, 1.0, 2.0, 3.0, 4.0. The shape of the curves near q = I illustrates the 
difference in the system above and below ~c = 2: below and including the critical ~c, the 
curves approach the same value x~= 1/3 with infinite slope (exponent 2/3); above ~c the 
curves have finite slope at q = 1 and the limit varies with K. 

0.5-  

0.4-  

0.3- 

0.1 

0.0 I I I 

3 4 

Fig.  3. T h e  rad ius  o f  c o n v e r g e n c e  x c ( y  , q, ~c) at f ixed y = 1/2 and  q = 1 p lo t t ed  aga ins t  ~. 
T h e  rad ius  o f  c o n v e r g e n c e  is c o n s t a n t  (x~. = 1 /3)  b e l o w  ~c c = 2.0. 



1190 Owczarek and Prellberg 

convergence of (60), again at fixed y = 1/2, to illustrate the critical wetting 
transition. These plots could equally well have been plot ted against  y for 
fixed x producing  the "binding" transition, described above,  on decreasing 
y ra ther  than  increasing ~:. The  simple compet i t ion  of t empera ture  and 
binding potent ia l  is quantified by Eq. (66). To  complete  the picture, we 
give the phase  d iagram (Fig. 4), found from the singularities in the free 
energy, at fixed binding potent ia l  x = 2  in the tempera ture- f ie ld  (y-q) 
plane. 

We are now in a posi t ion to discuss exponents.  All the canonical  or  
free energy exponents  (4) and some of the grand canonical  or generat ing 
function exponents/2) have been given explicitly (or at least implicitly) in 
previous works. The  generat ing function G (1) always diverges on approach-  
ing its radius of convergence in this problem,  a l though this is not  
necessarily the case in general. This ensures that  the the rmodynamic  limit 
is taken,  that  is, ( N )  = 0 log G/O log x ~ o% and immediate ly  tells us that  
the length of the interface is infinite. In fact, bo th  the expected value of N 
and the length diverge linearly with the inverse distance to the radius of 
convergence surface, regardless of the temperature ,  magnetic,  or binding 
fields. Exponents  m a y  then be calculated f rom the generat ing function. (2) 
Quant i t ies  (we use G to denote  either generat ing function G (1) or  G (H)) 
that  can be easily found are the average surface contact  

c3 log G 
( L s )  - - -  (67) 

c3 log tc 

Fig. 4. The phase diagram (the singularities in the free energy rather than the generating 
function) at fixed x = 2.0. There is a critical point at a temperature given by y = 1/2 and field 
q = l (that is, H = 0). For low temperatures y < 1/2 the interface is bound and no transition 
takes place on varying the field to zero, whereas for high temperatures y > 1/2 there is a line 
of complete wetting transitions, denoted by the line on the diagram. 
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and the average area  under  the interface 

~3 log G 
( A )  (68) 

~? log q 

These in turn give 'us exponents  for the coverage 

C(x ,  y, q, x ) =  (69) 
( N )  

and the average distance of the interface to the wall 

( A )  
(Ld)  = (70) 

( N )  

The coverage in the limit x --* x c, that  is, C ( x , ,  y ,  q, x), can be seen to be 
an order  pa rame te r  of the wetting transi t ions in addi t ion to the s tandard  
one of the distance ( L a ) .  

We first discuss the singularities in the generat ing function itself. We 
define the exponent  7 by 

G ~ (Xc - x ) - 7  (71) 

for (xc - x) small. Fo r  q < 1 and q = 1 with ~c ~> t% there is a simple pole in 
the generat ing function and 7(1~= 1. Fo r  q =  1 and ~c < G, the generat ing 
function has a square root  singularity and 7(J/= 1/2. 

Next,  one can consider the limit q ~ 1 fixing x = x~(y ,  1, ~c) and ~c ~< Kc 
to find 

G (1) ~ (1 - q ) -  1/3 (72) 

so that  the grand canonical  field crossover  exponent  is ~b q = 2/3. This is 
confirmed by calculating the shape of the free energy surface for K ~ ~:~ as 
q--* 1. This immediate ly  gives the following result for the singularity in the 
canonical  free energy at the complete  wetting transition: 

f s ing  ~ 92/3 (73) 

that  is, e~ /=  4/3. 
Defining v s as the divergence exponent  for the average number  of con- 

tacts with the wall, we find that  for q < 1, and q = 1 with ~c/> ~ ,  v s = 1, 
while for ~c<~c c, then ( L ~ )  stays finite as x ~ x c .  At the critical point, 
~c = ~:c (and q = 1), v~ = 1/2, which implies that  the coverage goes to zero 
with a square root  singularity. F r o m  ref. 19 the coverage goes to zero 
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linearly as t c ~ c  +,  which implies a grand canonical temperature or 
binding exponent ~bK= 1/2. (There is no change in crossing over from 
binding potential to temperature, as they are similar scaling fields at the 
critical wetting transition.) This exponent again agrees with the shape of 
the free energy surface, since 

fs ing '~" ( K  - -  K c )  2 (74) 

which gives e~ =c~r=O. We now immediately confirm the result that the 
temperature (or binding potential) to magnetic field crossover exponent (12) 
in the free energy is 1/3 = ~U~b q. 

One can find exponents in all directions for the distance of the 
interface to the wall ( L d )  by utilizing the crossover exponents and the 
known result ~4) that 

( L d )  "-~ (To - 7 )  - 1  (75) 

for zero field. 
All the exponents can be either found directly from (60) or confirmed 

from (44) using the functional equations even though the theory of the 
asymptotics of basic hypergeometric functions has not been widely studied. 
By studying the continuous SOS model via our (suitably modified) 
method, all the exponents could have been calculated quite simply using 
the knowledge of the asymptotics of Bessel functions. 

7. D ISCUSSION 

We have presented the exact solution of a much studied model of 
interfacial physics and have shown that the solutions of discrete models 
in this class are of the same level of difficulty as semicontinuum ones. 
However, as the solution (44) is expressed in terms of functions (27) that 
are somewhat recondite, it may seem more difficult. Since the two models 
have similar critical behavior, it implies that the asymptotics of q-series can 
sometimes be treated by approximation to ordinary special functions. 
We believe this observation may be of importance to the study of the 
asymptotics of q-series in general. We also have reiterated the importance 
of the method of Temperley, which can be extended to the semicontinuous 
model as an alternative to the transfer matrix method. We have shown that 
the solution can be found from either a difference/differential equation or 
a functional equation and can be written down in terms of a series or 
continued-fraction expansion. Using the functional equations, we have 
checked that the exponents are those that are expected of this problem and 
have given the three crossover exponents. 
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Another observation that can be made by considering SOS walks that 
do not touch the surface other than at the last step. Here one is equiv- 
alently considering the problem of enumerating bar-graph polygons (see 
Fig. 5) according to perimeter and area. Moreover, if one had considered 
this problem first, the generating function G (1~) for the SOS walks could 
have been found by a necklacing argument. (6'2s) The generating function 
Gbg for these polygons is then given essentially by (13) with/~ = y  as 

Gbg(X , y, q) = fq(x 2, y, q, 0; y) (76) 

and in turn gives via necklacing 

G(lt)(x, Y, q, x) = ~cx[1 q- Gbg(X I/2, y, q)] (77) 
1 -- tcx[1 + Gbg(x ~/2, y, q)] 

We remark also that the work of Zwanzig and Lauritzen (26'27) and 
Nordholm ~2s) on a model of polymer crystallization (ZL) is related to 
the SOS model analyzed here with x = 1 and the work of Abraham and 
Smith. (12) These authors considered, without identifying it, the ~c= 1 
transfer matr ix/operator  for the SOS model in a field. Even at ~:= 1 the 
generating functions for the ZL and our SOS models are different, although 
related, because of the added restriction in the polymer model that requires 
the walks to "fold" at every turn. 

Necklacing arguments are quite powerful and we show in another 
publication ~24) that such an argument can be invoked also to relate the ZL 
model to the interacting PDSAW (IPDSAW) model, (23' 29) where one con- 
siders enumerating PDSAWs by length weighted with nearest-neighbor 
interactions on a fully infinite lattice. We caution the reader, however, that 
neither the IPDSAW nor the ZL model on semi-infinite lattices with a 

x 

Fig. 5. A typical bar-graph polygon weighted by area I-q] (shaded), horizontal [x], and ver- 
tical [y] perimeters. These are essentially equivalent to SOS walks that begin and end on the 
surface without otherwise touching the surface apart from the fact that the bottom perimeter 
is alse weighted. Hence, the polygons have the equivalent weight x 2 for each SOS walk 
horizontal step. The "no touching" constraint can be achieved by an infinite local repulsion, 
that is, x ~ 0. 
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sur face  in terac t ion  is r e l a t ed  to the  S O S  p r o b l e m  of  this paper ,  because  

the  r e l a t i onsh ip  b e t w e e n  the  two  w h e n  tc = 1 requ i res  a t r a n s f o r m a t i o n  to 

dif ference c o o r d i n a t e s  in the  p o l y m e r  p rob lems .  
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